Simple groups and the classification of finite groups
ثبت نشده
چکیده
How can we describe all finite groups? Before we address this question, let’s write down a list of all the finite groups of small orders ≤ 15, up to isomorphism. We have seen almost all of these already. If G is abelian, it is easy to write down all possible G of a given order, using the Fundamental Theorem of Finite Abelian Groups: G must be isomorphic to a direct product of cyclic groups, and any isomorphism between two such direct products is a consequence of the Chinese Remainder Theorem. For example, if #(G) = n and n is a product of distinct primes then G is cyclic, and hence isomorphic to Z/nZ. The only cases where this doesn’t happen for n ≤ 15 are: • n = 4 and G ∼= Z/4Z or G ∼= (Z/2Z)× (Z/2Z). • n = 8 and G ∼= Z/8Z, G ∼= (Z/4Z)×(Z/2Z) or G ∼= (Z/2Z)×(Z/2Z)× (Z/2Z).
منابع مشابه
Classification of finite simple groups whose Sylow 3-subgroups are of order 9
In this paper, without using the classification of finite simple groups, we determine the structure of finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.
متن کاملA Simple Classification of Finite Groups of Order p2q2
Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, respectively. In this paper, we show that up to isomorphism, there are four groups of order p^2q^2 when Q and P are cyclic, three groups when Q is a cyclic and P is an elementary ablian group, p^2+3p/2+7 groups when Q is an elementary ablian group an...
متن کامل2-recognizability of the simple groups $B_n(3)$ and $C_n(3)$ by prime graph
Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...
متن کاملAlmost simple groups with Socle $G_2(q)$ acting on finite linear spaces
After the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. In this article, we present a partial classification of the finite linear spaces $mathcal S$ on which an almost simple group $G$ with the socle $G_2(q)$ acts line-transitively.
متن کاملCharacterization of finite $p$-groups by the order of their Schur multipliers ($t(G)=7$)
Let $G$ be a finite $p$-group of order $p^n$ and $|{mathcal M}(G)|=p^{frac{1}{2}n(n-1)-t(G)}$, where ${mathcal M}(G)$ is the Schur multiplier of $G$ and $t(G)$ is a nonnegative integer. The classification of such groups $G$ is already known for $t(G)leq 6$. This paper extends the classification to $t(G)=7$.
متن کاملOn some Frobenius groups with the same prime graph as the almost simple group ${ {bf PGL(2,49)}}$
The prime graph of a finite group $G$ is denoted by $Gamma(G)$ whose vertex set is $pi(G)$ and two distinct primes $p$ and $q$ are adjacent in $Gamma(G)$, whenever $G$ contains an element with order $pq$. We say that $G$ is unrecognizable by prime graph if there is a finite group $H$ with $Gamma(H)=Gamma(G)$, in while $Hnotcong G$. In this paper, we consider finite groups with the same prime gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016